
KNBD - A Remote Kernel Block Server for

Linux

Jeff Becker

MRJ Technology Solutions

NASA Ames Research Center

I am developing a prototype of a Linux remote disk block server whose purpose is to serve as a

lower level component of a parallel file system. Parallel file systems are an important component

of high performance supercomputers and clusters. Although supercomputer vendors such as SGI

and IBM have their own custom solutions, there has been a void and hence a demand for such a

system on Beowulf-type PC Clusters. Recently, the Parallel Virtual File System (PVFS) project at

Clemson University has begun to address this need (1). Although their system provides much of

the functionality of (and indeed was inspired by) the equivalent file systems in the commercial

supercomputer market, their system is all in user-space. Migrating their IO services to the kernel

could provide a performance boost, by obviating the need for expensive system calls.

Thanks to Pavel Machek, the Linux kernel has provided the network block device (2) with kernels

2.1.101 and later. You can configure this block device to redirect reads and writes to a remote

machine's disk. This can be used as a building block for constructing a striped file system across

several nodes. Figure 1 shows its structure and operation.

Local Machine Remote Machine

User SpaceRead/Write NBD server
/'1

_Ke BackingNBD rnel Space device/file
device

FIGURE 1. nbd structure

Reads and writes to the device are redirected through a TCP socket to a user-land server. The

server then issues the request (through a system call) on a backing device or file and returns any

results to the nbd driver through the socket. The driver passes these back to the caller. The connec-

tion is set up as follows. First, the server is started on the remote machine with the port to listen

for connections given as a command line parameter. The backing device or file is also specified on

the command line. A user-land client is then started on the local machine, with the remote

machine name and port given as command line parameters. The client creates the socket to the

server, and then hands it to the nbd driver through an ioctl0. Once the connection is initialized,

you can use nbd like any other local block device, e.g., make a file system on it, use it as part of a

RAID configuration, etc. A primary performance- related shortfall is that the server is in user-

KNBD - A Remote Kernel Block Server for Linux 1



space. Thus every request from nbd must cross from the local kernel to user-space on the remote

machine. The server then makes an expensive system call to access the backing device, and the

path (and kernel/user crossings) are reversed on the return to the local machine. This shortfall is

eliminated by moving the ser_'er to the kernel. This is the motivation for knbd whose structure is

shown in figure 2.

Local Machine Remote Machine

Read/Write ] User Space

I NBD device] Request

Kernel Space

_'_ KNBD server ]

Backingdevice/file]

FIGURE 2. knbd structure

In order to simplify development and testing, the kernel nbd server is designed as a kernel mod-

ule. It is also designed to be used with the standard nbd device and client. Module initialization

takes a port and a backing device as parameters using the Linux MODULE_PARM macros. The

module_init routine sets up a TCP socket and starts a kernel thread to listen for a connection from

the nbd client. The kernel thread basically follows the structure of the user-space nbd server. It

does an initial handshake, e.g., to tell the client the size of the backing device/file, allocates a local

knbd buffer, then enters a loop to wait for requests. Upon receiving a request, the server thread

executes the following pseudo-code:

decode and check request (address, length, type (read or write))

if write, get data from client nbd and put it in the local knbd buffer

while (length > O)

get a buffer head (using getblk())

if (type == read)

fill in the buffer from the buffer cache (ll_rw_block();

wait_on_buffer (buffer head) ;)

copy daza from buffer to the local knbd buffer

else /* type == write */

copy data from local knbd buffer to buffer cache buffer

mark buffer cache buffer dirty (so bdflush moves it to the
backing device/file)

subtract amoLunt read or written from length

release the buffer head (with brelse())

send status of request back to client nbd

I've tested the server on i386 platforms running Red Hat Linux 6.0FLinux kernel 2.3.18. I first

configured the module to be backed by the linux loop device (backed by a large file). I then started

KNBD - A Remote Kernel Block Server for Linux 2



Q

the client on another machine. After verifying the initial socket setup and handshake worked cor-

rectly, I ran mkfs on the client nbd device to make an ext2 file system. I then verified that I could

successfully mount the nbd device and perform miscellaneous file operations on it (such as cp, Is,

cat, vi etc.).

I also ran the bonnie I/O benchmark to compare the userland nbd server to knbd on the above con-

figuration. The knbd server outperformed the userland server on both block reads (1054 K/sec vs

1044 K/sec) and block writes (3888 K/sec vs 2561 K/sec). The latter is about a 50% increase in

performance!

As a more strenuous test, I loaded the block server module onto a third machine, and started a sec-

ond client (on/dev/nbdl) on the machine running the first client (on/dev/nbd0). I then set up a

RAID0 (striped) device (/dev/md0) across nbd0 and nbdl. I was then able to mkfs on/dev/md0

and mount it. This was followed by successfully untar'ing and building a large software source

base (for the fte editor).

At this time, I have submitted the remote block server code to several people for testing and

review. I have already received one favorable reply from Marcelo Tosatti. In addition to perform-

ing successful tests of my code, he has also kindly provided a patch to build and run the module

on Linux 2.2. While I await other responses, I am pursuing a port of nbd to NetBSD. This operat-

ing system does not provide a network block device, so this will have to be ported along with the

kernel block server. The user-land client should port over without much modification. In a related

activity, I plan to evaluate the Slice Block IO server for FreeBSD, part of the Trapeze project at

Duke University (3). It seems to provide similar functionality, and may be useful in simplifying

the porting effort. However, Slice is not currently available in either source or binary form.

An additional future direction is to extend the Linux knbd server to provide multithreading, i.e., to

fork off a new kernel thread for each unique client. I would also like to pursue reordering of

events in order to boost performance (suggested by Pavel Machek).

References.

1. http://ece.clemson.edu/parl/pvfs

2. http://atrey.karlin.mff.cuni.cz/~pavel/nbd/nbd.html

3. http:llwww.cs.duke.edu/ari/trapeze/

KNBD - A Remote Kernel Block Server for Linux 3


